Answer:
The rusting of the metal is a chemical change.
Explanation:
Answer:
it is outside the nucleus F
it has a positive charge T
it has no mass F
it has a negative charge F
it is inside the nucleus ...it is part OF the nucleus.
it is the same as the atomic number T
it is the same as the number of neutrons F
75% of the isotopes have a mass ima just guess cuz i dunno about this one...i think it matters on the atom element.
Explanation:
Explanation:
Scientists most especially chemists use the mole concepts through balanced chemical equations and molar masses to represent chemical reactions and account for the amount of substances.
The mole concept entails finding molar relationships between reactants and products in a chemical reaction. Mole connects difference chemical parameters and it is used in quantitative analysis of chemical reaction.
- First, we work from the known to the unknown.
- The known is the specie whose mass or number of moles is given.
Number of moles = 
- After obtaining the number of moles, then go ahead to compared using the balanced reaction with that of the unknown.
- Then from them find the mass of the unknown.
Answer:
26.6
Explanation:
Step 1: Calculate the molar concentrations
We will use the following expression.
M = mass solute / molar mass solute × liters of solution
[CO]i = 26.6 g / (28.01 g/mol) × 5.15 L = 0.184 M
[H₂]i = 2.36 g / (2.02 g/mol) × 5.15 L = 0.227 M
[CH₃OH]e = 8.63 g / (32.04 g/mol) × 5.15 L = 0.0523 M
Step 2: Make an ICE chart
CO(g) + 2 H₂(g) ⇄ CH₃OH(g)
I 0.184 0.227 0
C -x -2x +x
E 0.184-x 0.227-2x x
Since [CH₃OH]e = x, x = 0.0523
Step 3: Calculate all the concentrations at equilibrium
[CO]e = 0.184-x = 0.132 M
[H₂]e = 0.227-2x = 0.122 M
[CH₃OH]e = 0.0523 M
Step 4: Calculate the equilibrium constant (Kc)
Kc = [CH₃OH] / [CO] [H₂]²
Kc = 0.0523 / 0.132 × 0.122² = 26.6