Answer is: 230 g.
Chemical reaction: P₄ + 5O₂ → 2P₂O₅.
m(P₄) = 100 g.
M(P₄) = 4 · 31 g/mol = 124 g/mol.
n(P₄) = m(P₄) ÷ M(P₄) = 100g ÷ 124g/mol = 0,806 mol.
From reaction: n(P₄) : n(P₂O5) = 1 : 2.
n(P₂O₅) = 1,612 mol.
m(P₂O₅) = 1,612 mol · 142g/mol = 230g.
M - molar mass.
n - amount of substance.
In your choices, the best answer is the mass of the reactants and the mass of the products are no equal. The chemical equilibrium can take place in a close system and can not be affected by catalyst and is a reversible reaction. The best describe should be the concentration of reactants and products are constant.
Answer:
when the forward and reverse reactions occur at equal rates.
chemical reaction is in equilibrium when the concentrations of reactants and products are constant - their ratio does not vary.
To calculate the <span>δ h, we must balance first the reaction:
NO + 0.5O2 -----> NO2
Then we write all the reactions,
2O3 -----> 3O2 </span><span>δ h = -426 kj eq. (1)
O2 -----> 2O </span><span>δ h = 490 kj eq. (2)
NO + O3 -----> NO2 + O2 </span><span>δ h = -200 kj eq. (3)
We divide eq. (1) by 2, we get
</span>O3 -----> 1.5O2 δ h = -213 kj eq. (4)
Then, we subtract eq. (3) by eq. (4)
NO + O3 -----> NO2 + O2 δ h = -200 kj
- (O3 -----> 1.5 O2 δ h = -213 kj)
NO -----> NO2 - 0.5O2 δ h = 13 kj eq. (5)
eq. (2) divided by -2. (Note: Dividing or multiplying by negative number reverses the reaction)
O -----> 0.5O2 <span>δ h = -245 kj eq. (6)
</span>
Add eq. (6) to eq. (5), we get
NO -----> NO2 - 0.5O2 δ h = 13 kj
+ O -----> 0.5O2 δ h = -245 kj
NO + O ----> NO2 δ h = -232 kj
<em>ANSWER:</em> <em>NO + O ----> NO2 δ h = -232 kj</em>