Answer:
The product of given
is ![\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-32%20%5C%5C4%5C%5C20%5C%5C-36%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Consider the given product of a constant and a matrix.
![-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right]](https://tex.z-dn.net/?f=-4%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C-1%5C%5C-5%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
To do product we multiply scalar -4 with each element of the matrix given,
![-4 \cdot \left[\begin{array}{ccc}8\\-1\\-5\\9\end{array}\right]= \left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right]](https://tex.z-dn.net/?f=-4%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C-1%5C%5C-5%5C%5C9%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%20%5Ctimes%208%20%5C%5C-4%20%5Ctimes%20-1%5C%5C-4%20%5Ctimes%20-5%5C%5C-4%20%5Ctimes%209%5Cend%7Barray%7D%5Cright%5D)
On solving further , we get,
![\left[\begin{array}{ccc}-4 \times 8 \\-4 \times -1\\-4 \times -5\\-4 \times 9\end{array}\right]=\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%20%5Ctimes%208%20%5C%5C-4%20%5Ctimes%20-1%5C%5C-4%20%5Ctimes%20-5%5C%5C-4%20%5Ctimes%209%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-32%20%5C%5C4%5C%5C20%5C%5C-36%5Cend%7Barray%7D%5Cright%5D)
Thus, the product of given
is ![\left[\begin{array}{ccc}-32 \\4\\20\\-36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-32%20%5C%5C4%5C%5C20%5C%5C-36%5Cend%7Barray%7D%5Cright%5D)
Answer:
3.1
Step-by-step explanation:
After substitution of the givens, the expression 4.7j-6.8k takes on the value
4.7(5) - 6.8(3) = 23.5 - 20.4 = 3.1
435-32n=179 would be the equation im pretty sure.
Answer:
Translate 2 units upward

Step-by-step explanation:
See attachment for the functions

Required
Determine the change in f(x) that gives the dashed line
From the attachment, there is only one transformation from f(x) to the dashed line.
The transformation is a translation of 2 units, upward.
Let the dashed line be g(x)
g(x) will be:

Substitute
for f(x)
