Entropy is an extensive property of a thermodynamic system. It quantifies the number Ω of microscopic configurations (known as microstates) that are consistent with the macroscopic quantities that characterize the system (such as its volume, pressure and temperature).[1] Under the assumption that each microstate is equally probable, the entropy
S
S is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant
Answer:
frequency 1 = 334.30 Hz
frequency 2 = 1002.92 Hz
Explanation:
Given data
speaker distance y = 0.513 m
microphone distance D = 1.80 m
to find out
lowest two frequencies
solution
we know velocity of sound is 343 m/s
so we consider point x
so at 1st speaker distance from x = D + (y/2)
1st speaker distance from x = 1.80 + (0.513/2) = 2.0565 m .....1
and
at 2nd speaker distance from x = D - (y/2)
2nd speaker distance from x = 1.80 - (0.513/2) = 1.5435 m .........2
so destructive interference from 1 and 2 we know
1st - 2nd = ( m + 0.5 ) wavelength
2.0565 m - 1.5435 m = ( 0+ 0.5) wavelength
wavelength = 1.026 m
so here 1st min frequency will be
frequency 1 = velocity of sound / wavelength
frequency 1 = 343 / 1.026 =334.30 Hz
and
2nd min frequency will be
frequency 2 =
2.0565 m - 1.5435 m = ( 1 + 0.5) wavelength
wavelength = 0.342 m
frequency 2 = velocity of sound / wavelength
frequency 2 = 343 / 0.342 = 1002.92 Hz
Answer:
Part a)

Part b)

Explanation:
As we know that mountain climber is at rest so net force on it must be zero
So we will have force balance in X direction


now we will have force balance in Y direction


Part a)
so from above equations we have



Part b)
Now for tension in right string we will have


Answer:
h'=0.25m/s
Explanation:
In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).
So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of
. As you may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.
If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

When solving for r, we get:

so we can substitute this into our volume of a cone formula:

which simplifies to:


So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

Which simplifies to:

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)
So we get:

Now we can substitute the provided values into our equation. So we get:

so:

Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law