1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
12

Which vector should be negative?

Physics
1 answer:
Bas_tet [7]3 years ago
5 0
The velocity of a falling object. In physics, down is regarded as a negative direction.
You might be interested in
A 15 m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60° angle with horizontal. (a) Find t
scoray [572]

Answer:

a)    F₁ = 267.3 N,   N₁ = 1300 N,  b)    μ = 0.324

Explanation:

For this exercise we use the rotational equilibrium condition, we have a reference system is the floor and the anticlockwise rotations as positive, in the adjoint we can see a diagram of the forces

           

let's use subscript 1 for the ladder and 2 for the firefighter

            ∑ τ = 0

          -W₁ x₁ - W₂ x₂ + N₁ y = 0

           N₁ = \frac{W_1 x_1 + W_2 x_2}{y}          (1)

the center of mass of the ladder is at its geometric center,

d = L / 2 = 15/2 = 7.5 m

         cos 60 = x₁ / d₁

         x₁ = d₁ cos 60

         x₁ = 7.5 cos 60

         x₁ = 3.75 m

for the firefighter d₂ = 4 m

         cos 60 = x₂ / d₂

         x₂ = d₂ cos 60

          x₂ = 4 cos 60 = 2 m

for the fulcrum d₃ = 15 m

         sin 60 = y / d₃

         y = d₃ sin 60

         y = 15 sin 60

         y = 13 m

we look for the Normal by substituting in equation 1

         N₂ = \frac{500 \ 3.75 \ + 800 \ 2}{13}

         N₂ = 267.3 N

now let's use the translational equilibrium relations

 X axis

           F₁ - N₂ = 0

           F₁ = N₂

           F₁ = 267.3 N

Axis y

          N₁ - W₁ -W₂ = 0

          N₁ = W₁ + W₂

          N₁ = 500 + 800

          N₁ = 1300 N

b) for this case change the firefighter's distance d₂ = 9 m

          x₂ = 9 cos 60

          x₂ = 4.5 m

we substitute in 1

          N₂ = \frac{500 \ 3.75 \ + 800 \ 4.5}{13}  

          N₂ = 421.15 N

of the translational equilibrium equation on the x-axis

          fr = F₁ = N₂

          fr = 421.15 N

friction force has the expression

          fr = μ N

in this case the reaction of the Earth to the support of the ladder is N1 = 1300N

          μ = fr / N₁

          μ = 421.15 / 1300

          μ = 0.324

8 0
2 years ago
a baseball pitcher throws a fastball at 42 meters per second. if the batter is 18 meters from the pitcher, approximately how muc
lapo4ka [179]
T=D/v = 18/42 = 43 seconds
6 0
3 years ago
Read 2 more answers
The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, in
bezimeni [28]

1) Potential difference: 1 V

2) V_b-V_a = -1 V

Explanation:

1)

When a charge moves in an electric field, its electric potential energy is entirely converted into kinetic energy; this change in electric potential energy is given by

\Delta U=q\Delta V

where

q is the charge's magnitude

\Delta V is the potential difference between the initial and final position

In this problem, we have:

q=4.80\cdot 10^{-19}Cis the magnitude of the charge

\Delta U = 4.80\cdot 10^{-19}J is the change in kinetic energy of the particle

Therefore, the potential difference (in magnitude) is

\Delta V=\frac{\Delta U}{q}=\frac{4.80\cdot 10^{-19}}{4.80\cdot 10^{-19}}=1 V

2)

Here we have to evaluate the direction of motion of the particle.

We have the following informations:

- The electric potential increases in the +x direction

- The particle is positively charged and moves from point a to b

Since the particle is positively charged, it means that it is moving from higher potential to lower potential (because a positive charge follows the direction of the electric field, so it moves away from the source of the field)

This means that the final position b of the charge is at lower potential than the initial position a; therefore, the potential difference must be negative:

V_b-V_a = - 1V

8 0
3 years ago
Should a flat grassland or a hillside have deeper soil? Explain your answer.
Fudgin [204]
A hillside of course my friend
7 0
3 years ago
0.16 mol of argon gas is admitted to an evacuated 70 cm^3 container at 30°C. The gas then undergoes an isothermal expansion to a
Semmy [17]

Answer:

The final pressure of the gas is 9.94 atm.

Explanation:

Given that,

Weight of argon = 0.16 mol

Initial volume = 70 cm³

Angle = 30°C

Final volume = 400 cm³

We need to calculate the initial pressure of gas

Using equation of ideal gas

PV=nRT

P_{i}=\dfrac{nRT}{V}

Where, P = pressure

R = gas constant

T = temperature

Put the value in the equation

P_{i}=\dfrac{0.16\times8.314\times(30+273)}{70\times10^{-6}}

P_{i}=5.75\times10^{6}\ Pa

P_{i}=56.827\ atm

We need to calculate the final temperature

Using relation pressure and volume

P_{2}=\dfrac{P_{1}V_{1}}{V_{2}}

P_{2}=\dfrac{56.827\times70}{400}

P_{2}=9.94\ atm

Hence, The final pressure of the gas is 9.94 atm.

3 0
3 years ago
Other questions:
  • If a certain mass of mercury has a volume of 0.002 m^3 at a temperature of 20°c, what will be the volume at 50°c
    8·2 answers
  • In the earth-moon system the moon orbits the earth. What is the "centripetal" force causing the moon to stay in orbit around the
    14·1 answer
  • Two parallel disks of diameter D 5 0.6 m separated by L 5 0.4 m are located directly on top of each other. Both disks are black
    6·1 answer
  • A 75-kg refrigerator is located on the 70th floor of a skyscraper (300meters a over the ground) What is the potential energy of
    5·1 answer
  • What is the wavelength of an earthquake wave if it has a speed of 7 km/s and a frequency of 3 Hz?
    11·1 answer
  • According to Kepler's third law (p2 = a3), how does a planet's mass affect its orbit around the Sun? Group of answer choices
    7·1 answer
  • A runner accelerates to 4.2 m/s2 for 10 seconds before winning the race. How far did he/she run?
    10·2 answers
  • Determine how dollar bills, placed end to end, are required to go around Earth at the equator. You will need to measure the leng
    14·1 answer
  • 1. If we want to increase the strength of an electromagnet, which 2 of
    5·1 answer
  • How much time is needed for a car to accelerate from 2.0 m/s to a speed of 6.0 m/s if its acceleration is 10 m/s^2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!