Answer:
In an acid-base equilibrium, acid becomes a conjugate base and base becomes a conjugate acid.
Explanation:
Let's remember the Bronsted-Lowry theory to answer this specific question. According to the theory, acid is a proton donor, while a base is a proton acceptor.
Consider an acid in a form HA (aq) and base in a form of B (aq). Since acid is a proton donor, it will donate its hydrogen ion to the base, B. The resultant products would be (aq) and (aq).
Remember that an acid-base reaction is an equilibrium reaction. This means we may also look at this proton transfer reaction from the product side towards the reactants. Summarizing what has been said, we may write the equilibrium as:
⇄
Now acid, HA, donates a proton to become a conjugate base. The conjugate base, if we look from the reverse equation side, is actually a base, since it can accept a proton to become HA. Similarly, B accepts a proton to become a conjugate acid. Looking from the reverse reaction, it can now donate a proton, so in reality we can consider it a base.
To summarize, your logic is correct.
Atom <span>Appears in these related concepts: Early Ideas about Atoms, Stable Isotopes, and Atomic Theory of Matter</span>balanced equation <span>Appears in these related concepts: Effect of a Common Ion on Solubility, Reaction Stoichiometry, and Mole-to-Mole Conversions</span>bond <span>Appears in these related concepts: Factors Affecting the Price of a Bond, Current Maturities of Long-Term Debt, and Preferred Stock</span>chemical reaction <span>Appears in these related concepts: Periodic Table Position and Electron Configuration, Free Energy Changes for Nonstandard States, and Physical and Chemical Changes to Matter</span>chemistry <span>Appears in these related concepts: Description of the Hydrogen Atom, Mass-to-Mole Conversions, and General Trends in Chemical Properties</span>element <span>Appears in these related concepts: Development of the Periodic Table, Elements and Compounds, and The Periodic Table</span>energy <span>Appears in these related concepts: Surface Tension, Energy Transportation, and Introduction to Work and Energy</span>gas <span>Appears in these related concepts: Oxidation Numbers of Metals in Coordination Compounds, Irreversible Addition Reactions, and Microstates and Entropy</span>isolated system <span>Appears in these related concepts: Conservation of Mechanical Energy, Internal Energy, and Comparison of Enthalpy to Internal Energy</span>liquid <span>Appears in these related concepts: Overview of Atomic Structure, Types of Synthetic Organic Polymers, and Three States of Matter</span>matter <span>Appears in these related concepts: Physical and Chemical Properties of Matter, Introduction: Physics and Matter, and The Study of Chemistry</span>mole <span>Appears in these related concepts: Avogadro's Number and the Mole, Molar Mass of Compounds, and Concept of Osmolality and Milliequivalent</span>solid <span>Appears in these related concepts: Extractive Metallurgy, Metagenomics, and Some Polycyclic Heterocycles</span>system <span>Appears in these related concepts: Definition of Management, <span>Local, regional, national, international, and global marketers </span>, and Additional cost and energy saving suggestions for pumps</span>
<span />
Answer:
the person recieving low oxygen by haveing trouble breathing
Explanation:
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen if it occupies 31.6 mL at .
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.
Temperature =
As molar mass of is 32 g/mol. Hence, the number of moles of are calculated as follows.
Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.
Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen if it occupies 31.6 mL at .