Answer:
The temperatures of the objects must be different
Explanation:
if heat is flowing between two objects, then the objects must be at different temperatures.
Answer:
The ionization of 0.250 moles of H₂SO₄ will produce 0.5 moles of H⁺ (hydrogen ion)
Explanation:
From the ionization of H₂SO₄, we have
H₂SO₄ → 2H⁺ + SO₄²⁻
Hence, at 100% yield, one mole of H₂SO₄ produces two moles of H⁺ (hydrogen ion) and one mole of SO₄²⁻ (sulphate ion), therefore, 0.250 moles of H₂SO₄ will produce 2×0.250 moles of H⁺ (hydrogen ion) or 0.5 moles of H⁺ (hydrogen ion) and 0.25 moles of SO₄²⁻ (sulphate ion).
That is; 0.250·H₂SO₄ → 0.5·H⁺ + 0.250·SO₄²⁻.
Answer:
Explanation:
a )
m = m₀ 
m is mass after time t . original mass is m₀ , λ is disintegration constant
λ = .693 / half life
= .693 / 1590
= .0004358
m = m₀ 
b )
m = 50 x 
= 40.21 mg .
c )
40 = 50 
.8 = 
= 1.25
.0004358 t = .22314
t = 512 years .
Answer:
Explanation:
I think you meant a covalent bond, a bond between two non-metal atoms. This image can explain better than I can.
Answer:
2 51 × 10^-5mol/L
Explanation:
The concentration of hydrogen ions can be calculated using the formula below :
pH = -log [H+]
pH = 4.6
[H+] = ?
[H+] = Antilog (-4.6)
[H+] = 2 51 × 10^-5mol/L