Answer:
potential energy is the ability to do work
Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
Answer:
(a) The spring constant is 59.23 N/m
(b) The total energy involved in the motion is 0.06 J
Explanation:
Given;
mass, m = 240 g = 0.24 kg
frequency, f = 2.5 Hz
amplitude of the oscillation, A = 4.5 cm = 0.045 m
The angular speed is calculated as;
ω = 2πf
ω = 2 x π x 2.5
ω = 15.71 rad/s
(a) The spring constant is calculated as;
(b) The total energy involved in the motion;
E = ¹/₂kA²
E = (0.5) x (59.23) x (0.045)²
E = 0.06 J
Answer:
case x py L is in the positive z direction
case y px L the negative z direction
Explanation:
The angular amount is defined by the relation
L = r x p
the bold are vectors, where r is the position vector and p is the linear amount vector.
The module of this vector can be concentrated by the relation
L = r p sin θ
the direction of the vector L can be found by the right-hand rule where the thumb points in the direction of the displacement vector, the fingers extended in the direction of the moment p which is the same direction of speed and the palm points in the direction of the angular momentum L
in the case x py
the thumb is in the x direction, the fingers are extended in the direction and the palm is in the positive z direction
In the case y px
the thumb is in the y direction, the fingers are in the x direction, the palm is in the negative z direction
The answer should be d because they are constantly rotating