Explanation:
Bayer process is industrial method of the refining of the bauxite to produce alumina which is aluminum oxide.
As alumina is amphoteric in nature, it exhibits a higher solubility at both the extremes of pH range, it is possible to dissolve alumina in low as well as in high pH solutions.
Dissolution of the alumina at high pH is well recognized in Bayer process. Bauxite is digested in very <u>high pH solution (> 13) of alkali</u> like sodium hydroxide at temperature of about 150–250°C and pressure at 20 atm. <u>This is done so that the dissolved alumina is separated from rest of insoluble bauxite minerals. </u>
Answer:
The answer is E. All of the statements describe the anomeric carbon.
Explanation:
When a sugar switches from its open form to its ring form, the carbon from the carbonyl (aldehyde if it is an aldose, or a ketone in the case of a ketose) suffers a nucleophilic addition by one of the hydroxyls in the chain, preferably one that will form a 5 or 6 membered ring after the reaction.
As such, the anomeric carbon will have two oxygens attached (The original one and the one that bonded when the ring closed).
It will be chiral, given that it has 4 different groups attached. (-OR,-OH,-H and -R, where R is the carbon chain).
The hydroxyl group can be in any position (Above of below the ring), depending on with side the addition took place. (See attachment)
It is the carbon of the carbonyl in the open-chain form of the sugar, because it is the only one that can react with the Hydroxyls.
What are " of the following"?
The answer is A. It is an alkyn. There is a triple bond