Answer:
Gravitational Potential Energy = mgh
Explanation:
As the miner moves down, the GPE changes because the height changes.
Gravitational Potential Energy = mgh
Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
A substance changes from liquid to gas
Answer:

Explanation:
The intensity is related to the power and surface area by
. We need to calculate the surface area of a sphere of radius r=4.3ly.
Since 4.3ly is the distance light travels in 4.3 years at 299792458m/s, we can obtain it in meters by doing:

So we have:

consider the motion along the X-direction
X = horizontal displacement = 80 m
= initial velocity along the x-direction = v Cos60
t = time of travel
using the equation
X =
t
80 = (v Cos60) (t)
t = 160/v eq-1
consider the motion in vertical direction :
Y = vertical displacement = 20 m
= initial velocity in Y-direction = v Sin60
a = acceleration = - 9.8 m/s²
t = time of travel = 160/v
using the equation
Y =
t + (0.5) a t²
20 = (v Sin60) (160/v) + (0.5) (- 9.8) (160/v)²
v = 32.5 m/s