Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is
, where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and

If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation
, the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.
Answer: B.
Capacitors prevent current from moving through a circuit
Explanation:
If a direct voltage is applied on the capacitor, no conduction current flows through the capacitor if its insulating medium is perfect insulator. This is due to the fact that there are no free charge carriers in such medium. Basically the real insulator contains very few charge carriers and therefore a very small leakage current passes in the capacitor depending on the conductivity of the insulator.
If an alternating voltage is applied on the capacitor, a displacement current passes through the capacitor irrespective of the insulating medium. This current is termed also the capacitive current. It flows because of changing electric displacement with time.
I believe the answer is A
'In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy' is true for transverse waves only.
'In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy' is true for longitudinal waves only.
'Many wave motions in nature are a combination of longitudinal and transverse motion' is true for both longitudinal and transverse waves.
<u>Explanation:</u>
Longitudinal waves are those where the direction of propagation of particles are parallel to the medium' particles. While transverse waves propagate perpendicular to the medium' particles.
As wave motions are assumed to be of standing waves which comprises of particles moving parallel as well as perpendicular to the medium, most of the wave motions are composed of longitudinal and transverse motion.
So the option stating the medium' particle moves perpendicular to the direction of the energy flow is true for transverse waves. Similarly, the option stating the medium' particle moves parallel to the direction of flow of energy is true for longitudinal waves only.
And the option stating that wave motions comprises of combination of longitudinal and transverse motion is true for both of them.
Answer: a.) Roughness of the surfaces in contact with each other .
Higher the roughness of surfaces in contact with each other, greater is the friction between bodies. Force of friction will be less between smooth surfaces.
b.) Weight of the sliding/rolling body: greater the weight of the moving body on the surface, more is the force of friction on the body by the surface.
I hope this helps