Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.
Answer:
C1 + C2 = 30 parallel connection
C1 * C2 / (C1 + C2) = 7.2 series connection
C1 * C2 = 7.2 * (C1 + C2) = 216
C2 + 216 / C2 = 30 using first equation
C2^2 + 216 = 30 C2
C2^2 - 30 C2 + 216 = 0
C2 = 12 or 18 solving the quadratic
Then C1 = 18 or 12
Information travels along the axon once an impulse is received. The axon then takes it to the place where it can be sent off to another neuron
<span>dendrite → cell body → axon → axon terminals is the correct answer</span>
<span>If I managed to help you, please make sure to mark my answer as the "Brainliest" answer. Thanks! :)</span>
We need to see what forces act on the box:
In the x direction:
Fh-Ff-Gsinα=ma, where Fh is the horizontal force that is pulling the box up the incline, Ff is the force of friction, Gsinα is the horizontal component of the gravitational force, m is mass of the box and a is the acceleration of the box.
In the y direction:
N-Gcosα = 0, where N is the force of the ramp and Gcosα is the vertical component of the gravitational force.
From N-Gcosα=0 we get:
N=Gcosα, we will need this for the force of friction.
Now to solve for Fh:
Fh=ma + Ff + Gsinα,
Ff=μN=μGcosα, this is the friction force where μ is the coefficient of friction. We put that into the equation for Fh.
G=mg, where m is the mass of the box and g=9.81 m/s²
Fh=ma + μmgcosα+mgsinα
Now we plug in the numbers and get:
Fh=6*3.6 + 0.3*6*9.81*0.8 + 6*9.81*0.6 = 21.6 + 14.1 + 35.3 = 71 N
The horizontal force for pulling the body up the ramp needs to be Fh=71 N.
It depends on how fast you are going and in orincipal no