Answer:
1) 25
2) 2
3) f(g(1)) = 42
Step-by-step explanation:
1) Given that f(x) = 4x^2 + 9
If x = -2
f(-2) = 4(-2)^2 + 9
f(-2) = 4(4) + 9
f(-2) = 16 + 9
f(-2) = 25
2) Given that f(x) = 4x - 6
y = 4x - 6
Replace y with x
x = 4y - 6
MAke y the subject of the forfmula
4y = x+ 6
y = (x+6)/4
SInce x = 2
f^(-1)(2) = (2+6)/4
f^(-1)(2) = 8/4 = 2
3) If f(x) = 6x and g(x) = x+6
f(g(x)) = f(x+6)
f(x+6) = 6(x+6)
Since x = 1
f(g(1)) = 6(1+6)
f(g(1)) = 6(7)
f(g(1)) = 42
The simplified expression by rationalizing the denominator is (C)
.First we must simplify the expression:

Then we factor the rational parts and cancel it out:

Then we rationalize the expression:

<span>Finally, the simplified expression by rationalizing the denominator is (C)

.</span>
Answer:
40%
Step-by-step explanation:
i used a calculator
Answer:
c=4
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
2(c+1)=10
(2)(c)+(2)(1)=10(Distribute)
2c+2=10
Step 2: Subtract 2 from both sides.
2c+2−2=10−2
2c=8
Step 3: Divide both sides by 2.
2c
2
=
8
2
c=4
Missing questions and subsequent solutions:
(a) Write an equation for company A for cost, C, number of months, n, that Beni will pay for the phone.
Solution:
For company A:
C = 72.25 + 85.50n
(b) Write an eqyation for company B for cost, C, and number of months, n, that Bei will pay for the phone.
Solution:
For company B:
C = 151.25 + 65.75n
(c) Write an inequality when the cost from company A is better than cost from company B.
Solution:
72.25 + 85.50n ≤ 151.25 + 65.75n
(85.50-65.75)n ≤ (151.25 - 72.25)
19.75 n ≤ 79
n ≤ 4
(d) Value of n for which cost from the two companies will be the same.
Solution:
If cost for companies A and B are the same, then
72.25 + 85.50n = 151.25 + 65.75n
(85.5 - 65.75)n = 151.25 - 72.25
19.75n = 79
n = 79/19.75 = 4 months
After 4 months,
C = 72.25 + 85.5*4 = $414.25