Answer:
A mushroom is a heterotroph.
Explanation:
Mushrooms are fungi, which are heterotrophs because they depend on other organisms for their food.
I would think it is a heterogeneous mixture since it can't be an element since there are more than one type of atom, it can't be a compound since the leaves are not bonded together, and it can not be a homogeneous mixture since the leaves don't all blended together (the pile is not uniform) and you can distinguish all the different parts of the mixture. It can be considered a heterogeneous mixture since the leaves are mixed together (along with other things like dirt) in a non-uniform way so that you can point out the parts of the mixture and it does not look like one thing.
I hope this helps. Let me know in the comments if anything is unclear.
The half-life of the reaction is 50 minutes
Data;
- Time = 43 minutes
- Type of reaction = first order
- Amount of Completion = 45%
<h3>Reaction Constant</h3>
Let the initial concentration of the reaction be X
The reactant left = (1 - 0.45) X
= 0.55 X
= X
For a first order reaction

<h3>Half Life </h3>
The half-life of a reaction is said to be the time required for the initial amount of the reactant to reach half it's original size.

Substitute the values

The half-life of the reaction is 50 minutes
Learn more on half-life of a first order reaction here;
brainly.com/question/14936355
Answer : The electron configurations consistent with this fact is, (b) [Kr] 4d¹⁰
Explanation :
Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom are determined by the electronic configuration.
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The given electron configurations of Palladium are:
(a) [Kr] 5s²4d⁸
In this, there are 2 electrons in 's' orbital and 8 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital are paired but 'd' orbital are not paired. So, this configuration shows paramagnetic.
(b) [Kr] 4d¹⁰
In this, there are 10 electrons in 'd' orbital. From the partial orbital diagrams we conclude that electrons in 'd' orbital are paired. So, this configuration shows diamagnetic.
(c) [Kr] 5s¹4d⁹
In this, there are 1 electron in 's' orbital and 9 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital and 'd' orbital are not paired. So, this configuration shows paramagnetic.