Answer:
No
Explanation:
The conclusions from Thomoson's claims would be invalid if his experiment could not be replicated.
<em>One of the attributes of a valid experiment in science is replication. That is, an experiment must be repeatable with similar outcomes under similar conditions as the original experiment when independently performed by another scientist. Once an experiment cannot be replicated, the outcomes of such an experiment become invalid in science.</em>
Hence, <u>Thomoson's conclusion would be invalid if his experiment could not be replicated. </u>
The correct answer is 9.7 grams because mg are 1,000 difference to grams.
Answer:
True
Explanation:
I did the test and got 100
You have to calculate the oxidation estates of the atoms in each compound.
I will start with K2Cr2O7 because I believe that Cr is the best candidate to reduce its oxidation number in 3 units.
In K2Cr2O7:
- K has oxidation state of 1+, then K2 has a charge of 2* (1+) = 2+.
- O has oxidation state of 2*, then O7 has a charge of 7* (2-) = 14-.
That makes that Cr2 has charge of 14 - 2 = +12, so each Cr has +12/2 = +6 oxidation state.
In Cr2O3:
- O has oxidation state of 2-, then O3 has charge 3 * (2-) = - 6
- Then, Cr2 has charge 6+, and each Cr has charge 6+ / 2 = 3+.
So, we have seen that Cr reduced its oxidation state in 3 units, from 6+ to 3+.
Answer: Cr has a change in oxidation number of - 3.
The volume of the 0.279 M Ca(OH)₂ solution required to neutralize 24.5 mL of 0.390 M H₃PO₄ is 51.4 mL
<h3>Balanced equation </h3>
2H₃PO₄ + 3Ca(OH)₂ —> Ca₃(PO₄)₂ + 6H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 3
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of acid, H₃PO₄ (Ma) = 0.390 M
- Volume of acid, H₃PO₄ (Va) = 24.5 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.279 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(0.39 × 24.5) / (0.279 × Vb) = 2/3
9.555 / (0.279 × Vb) = 2/3
Cross multiply
2 × 0.279 × Vb = 9.555 × 3
0.558 × Vb = 28.665
Divide both side by 0.558
Vb = 28.665 / 0.558
Vb = 51.4 mL
Thus, the volume of the Ca(OH)₂ solution needed is 51.4 mL
Learn more about titration:
brainly.com/question/14356286