Answer:
<u>27 cm²</u>
Step-by-step explanation:
Shaded Area = Area ABCE - Area AED
- S.A. = 6 x 6 - 1/2 x 3 x 6 [DE = 1/2AB = 1/2 X 6 = 3]
- S.A. = 36 - 9
- S.A. = <u>27 cm²</u>
Answer:
Step-by-step explanation:
divided all the number
Answer:
Since Darcie wants to crochet a minimum of 3 blankets and she crochets at a rate of 1/5 blanket per day, we can determine how many days she will need to crochet a minimum of 3 blankets following the next steps:
- Finding the number of days needed to crochet one (1) blanket:
\begin{gathered}1=\frac{1}{5}Crochet(Day)\\Crochet(Day)=5*1=5\end{gathered}
1=
5
1
Crochet(Day)
Crochet(Day)=5∗1=5
So, she can crochet 1 blanket every 5 days.
- Finding the number of days needed to crochet three (3) blankets:
If she needs 5 days to crochet 1 blanket, to crochet 3 blankets she will need 15 days because:
\begin{gathered}DaysNeeded=\frac{NumberOfBlankets}{Rate}\\\\DaysNeeded=\frac{3}{\frac{1}{5}}=3*5=15\end{gathered}
DaysNeeded=
Rate
NumberOfBlankets
DaysNeeded=
5
1
3
=3∗5=15
- Writing the inequality
If she has 60 days to crochet a minimum of 3 blankets but she can complete it in 15 days, she can skip crocheting 45 days because:
AvailableDays=60-RequiredDaysAvailableDays=60−RequiredDays
AvailableDays=60-15=45DaysAvailableDays=60−15=45Days
So, the inequality will be:
s\leq 45s≤45
The inequality means that she can skip crocheting a maximum of 45 days since she needs 15 days to crochet a minimum of 3 blankets.
Have a nice day!
Answer:
z (min) = 705
x₁ = 10
x₂ = 9
Step-by-step explanation:
Let´s call x₁ quantity of food I ( in ou ) and x₂ quantity of food II ( in ou)
units of vit. C units of vit.E Cholesterol by ou
x₁ 32 9 48
x₂ 16 18 25
Objective function z
z = 48*x₁ + 25*x₂ To minimize
Subject to:
1.-Total units of vit. C at least 464
32*x₁ + 16*x₂ ≥ 464
2.- Total units of vit. E at least 252
9*x₁ + 18*x₂ ≥ 252
3.- Quantity of ou per day
x₁ + x₂ ≤ 35
General constraints x₁ ≥ 0 x₂ ≥ 0
Using the on-line simplex method solver (AtoZmaths) and after three iterations the solution is:
z (min) = 705
x₁ = 10
x₂ = 9