1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
9

Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a

Physics
1 answer:
Wittaler [7]3 years ago
8 0

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

You might be interested in
Plzzz help will mark the brainliest
ANEK [815]
Ciara is winging....etc
The answer is : 0.60 N, toward the center of the circle


A satellite....etc
The Answer is : 7400 m/s


What is the .....etc
The Answer is : 2.60 m/s
8 0
3 years ago
Catalytic ozone destruction occurs in the stratosphere by a two-step reaction:
Sladkaya [172]
Catalytic ozone destruction occurs in the stratosphere where the reactions involving bromine, chlorine, hydrogen, nitrogen and oxygen gases form compounds that destroy the ozone layer. The reactions uses a catalyst (speeds up the reaction) in a two step reaction. considering chlorine the reactions appears as follows;
step 1
 Cl + O3 = ClO + O2 
 step 2
ClO + O = Cl + O2 
Where by chlorine is released to destroy the ozone layer, this takes place many times even with the other elements (hydrogen, bromine, nitrogen) and the end result is a completely destroyed Ozone layer
7 0
3 years ago
1. The horizontal and vertical components of a projectile's velocity are
Anni [7]

The horizontal and vertical components of a projectile's velocity are independent of each other.

Answer: Option C

<u>Explanation:</u>

The path of a projectile is determined by two components of motion. They are termed as horizontal and the vertical components. Since both components velocity are perpendicular to each other, so it can stated that they are independent of each other.

Even it can seen that when the horizontal components of velocity is constant, then there will be change in the vertical components of velocity leading to free fall projectile path.

And in the absence of gravity, there will be change in the horizontal components of velocity with zero vertical component of velocity. Thus, the horizontal and the vertical components of a projectile’s velocity are seemed to be independent of each other.

5 0
3 years ago
A woman wearing athletic clothing outside. The woman is stretching her legs in a lunge position. Based on the nonverbal messages
Inessa05 [86]

Answer:

D

Explanation:

4 0
3 years ago
At what stage of a reaction do atoms have the highest energy?
alekssr [168]
The correct answer for the question that is being presented above is this one: "c. transition state stage." During the transition state stage, the reaction of the atoms have the highest energy. It is also <span>during the formation of the activated complex in the middle of the experiment.</span>
3 0
3 years ago
Other questions:
  • Name a characteristic property of water
    9·2 answers
  • How much heat, in joules and in calories, must be added to a 75.0–g iron block with a specific heat of 0.449 j/g °c to increas
    6·1 answer
  • A fugitive tries to hop on a freight train traveling at a constant speed of 5.0 m/s. Just as an empty box car passes him, the fu
    11·2 answers
  • An electric motor rotating a workshop grinding wheel at a rate of 1.31 ✕ 102 rev/min is switched off. Assume the wheel has a con
    13·1 answer
  • What is a nanotoxin and what areas can they be found in?
    12·1 answer
  • A crane used 250,000 Joules of work to move a beam to the top of a building in 20 seconds. How much power did the crane use?
    7·1 answer
  • How can being near a large body of water affect the climate of the region?
    12·2 answers
  • An electromagnetic wave with frequency 65.0Hz travels in an insulating magnetic material that has dielectric constant 3.64 and r
    7·1 answer
  • A cannonball explodes in mid-air, fragmenting into several pieces. How does the total
    10·1 answer
  • Verify the following equations:3² ×3³=243
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!