1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
9

Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a

Physics
1 answer:
Wittaler [7]3 years ago
8 0

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

You might be interested in
A +1.0 nC charge is at x = 0 cm, a -1.0 nC charge is at x = 1.0 cm and a 4.0 nC at x= 2 cm. What is the electric potential energ
lesantik [10]

Answer:

- 2.7 x 10^-6 J

Explanation:

q1 = 1 nC  at x = 0 cm

q2 = - 1 nC at x = 1 cm

q3 = 4 nC at x = 2 cm

The formula for the potential energy between the two charges is given by

U=\frac{Kq_{1}q_{2}}{r}

where r be the distance between the two charges

By use of superposition principle, the total energy of the system is given by

U = U_{1,2}+U_{2,3}+U_{3,1}

U=\frac{Kq_{1}q_{2}}{0.01}+\frac{Kq_{2}q_{3}}{0.01}+\frac{Kq_{3}q_{1}}{0.02}

U=-\frac{9\times10^{9}\times 1\times10^{-9}\times 1\times10^{-9}}}{0.01}-\frac{9\times10^{9}\times 1\times10^{-9}\times 4\times10^{-9}}}{0.01}+-\frac{9\times10^{9}\times 1\times10^{-9}\times 4\times10^{-9}}}{0.02}

U = - 2.7 x 10^-6 J

3 0
2 years ago
A flea jumps straight up to a maximum height of 0.550 m . what is its initial velocity v0 as it leaves the ground?
Alexxx [7]
Since my givens are x = .550m [Vsub0] = unknown
 [Asubx] = =9.80
 
 [Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]

[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]) 

Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in

0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)

0 = [Vsub0x]^2 -10.78

10.78 = [Vsub0x]^2

Sqrt(10.78) = 3.28 m/s 


3 0
3 years ago
Please help me! Science is not my best subject
Paul [167]
1)solid
2)contact
3)conduction
4)Fluid
5)Less
6)More
7)Convection
8)Waves
9)Radiation
10)emit
11)absorb
8 0
3 years ago
A kicker kicks a ball off the ground at 29.5 mi/hr and at 42.5 degrees.
deff fn [24]

Answer:

20.3m

Explanation:

the formula used was

s=(u^2sin^2∆)÷2g

4 0
2 years ago
What percent of the world lumber harvest goes to paper production<br> 10%<br> 20%<br> 25%<br> 50%
sergejj [24]
The answer is 50% of the paper production
8 0
3 years ago
Other questions:
  • A powerboat, starting from rest maintains a constant acceleration. After a certain time Δt, its displacement and velocity are Δr
    12·1 answer
  • 8. Noticing how much food is on your lunch<br> tray is a quantitative observation because
    8·1 answer
  • If the current density in a wire or radius R is given by J-k+5,0F wire? R, what is the current in the wire?
    7·1 answer
  • To push a 26.0 kg crate up a frictionless incline, angled at 25.0° to the horizontal, a worker exerts a force of 209 N parallel
    14·1 answer
  • A resistor and an inductor are connected in series to a battery. The battery is suddenly removed from the circuit. The time cons
    13·2 answers
  • Steve walks from his house 5 km South then turns east and walks 2 km. Then he walks 9 km North to his older sister's house. She
    5·1 answer
  • As a substance melts, heat energy is used to break the connections between molecules, and temperature __________ until all melti
    7·1 answer
  • What is the momentum of a child and a bicycle if the total mass of th
    8·1 answer
  • Tính hiệu suất nhiệt của động cơ nhiệt biết nhiệt lượng ở nguồn nóng 420,4kJ/kg và nhiệt lượng ở nguồn lạnh 218kJ/kg.
    10·1 answer
  • J.J. Thomson discovered the electron by noticing that: A. molecules with the same atoms exhibited the same chemical properties.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!