Answer:
the north and south pole
Explanation:
this should be the correct answer
Alot as far as i know unless you need it in formal terms.
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.
Answer: Light could be thought of as a stream of tiny particles discharged by luminous objects that travel in straight paths.
Explanation:
We can define "radiation" as the transmision of energy trough waves or particles.
Particularly, light is a form of electromagnetic radiation, so the "tiny particles" of light are discharged by a radiating object, particularly we can be more explicit and call it a luminous object, in this way we are being specific about the nature of the radiation of the object.
Answer:
Tension in the string is equal to 58.33 N ( this will be the strength of the string )
Explanation:
We have given mass m = 1.7 kg
radius of the circle r = 0.48 m
Kinetic energy is given 14 J
Kinetic energy is equal to 
So 

v = 4.05 m/sec
Centripetal force is equal to 
So tension in the string will be equal to 58.33 N ( this will be the strength of the string )