<span>Voltage overcomes the resistance of the electromagnet winding to force a current through that resistance. The field strength is proportional to the coil current. More voltage pushes more current. More voltage builds up the current faster, as well as forcing it to a higher final value. </span>
By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>
Answer:
t = 0.319 s
Explanation:
With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by
v = √T/λ
Linear density is
λ = m / L
λ = 4/20
λ = 0.2 kg / m
The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg
T = W = mg
T = 80 9.8
T = 784 N
The pulse rate is
v = √(784 / 0.2)
v = 62.6 m / s
The time it takes to reach the hook can be searched with kinematics
v = x / t
t = x / v
t = 20 / 62.6
t = 0.319 s
Answer:
Chicken Feet Or Butt Whole
Explanation:
Call Me Girls!