Answer:
T₂ = 95.56°C
Explanation:
The final resistance of a material after being heated is given by the relation:
R' = R(1 + αΔT)
where,
R' = Final Resistance = 207.4 Ω
R = Initial Resistance = 154.9 Ω
α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹
ΔT = Change in Temperature = ?
Therefore,
207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]
207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT
1.34 - 1 = (0.0045°C⁻¹)ΔT
ΔT = 0.34/0.0045°C⁻¹
ΔT = 75.56°C
but,
ΔT = Final Temperature - Initial Temperature
ΔT = T₂ - T₁ = T₂ - 20°C
T₂ - 20°C = 75.56°C
T₂ = 75.56°C + 20°C
<u>T₂ = 95.56°C</u>
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
1. Always be the bigger person
2. Violence is never the answer
3. Don’t fight fire with fire
Answer:
Explanation:
Given that:
angular frequency = 11.3 rad/s
Spring constant (k) = 
k = (11.3)² m
k = 127.7 m
where;
= 0.065 m
= 0.048 m
According to the conservation of energies;

∴



