Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
The definition of waves that propagate through electric fields is called electromagnetic waves. The earth, despite being covered with clouds, can be 'affected' because waves such as sunlight or the moon have the ability to penetrate and be visible to the inhabitants of the earth. Microwaves and radio waves would be less affected by the clouds that cover the Earth.
Through these waves, you can know that there is beyond the clouds.
Ultraviolet light, microwaves and radio waves are the radiations that penetrate through the clouds and reach the Earth's surface.
Therefore, the answer is Yes, ultraviolet light, microwaves and radio waves are the forms of radiation that penetrate and reach the ground.
Alpha particles travel through the air they collide with oxygen and nitrogen molecules. While they collide with these molecules, they lose some energy until all energy are used up and they are absorbed. These particles can be absorbed by a sheet of paper or by the air. On the other hand, beta particles and gamma particles move faster than the alpha particles and are poor at ionizing atoms or molecules thus it takes more of the material to be able to absorb these particles.
What Kepler's constant ? ? ! ?
The only constant in Kepler's laws is in the third one, where it says something to the
effect that (square of a body's period) / (cube of its distance from the central body)
is a constant.
That means it's a constant for multiple little ones orbiting the same central body.
But it's not the same constant for other central bodies.
It's one constant for the planets, asteroids, and comets orbiting the sun.
It's a different constant for the moon, TV satellites, weather satellites,
and military satellites orbiting the Earth.