k = spring constant of the spring = 100 N/m
m = mass hanging from the spring = 0.71 kg
T = Time period of the spring's motion = ?
Time period of the oscillations of the mass hanging is given as
T = (2π) √(m/k)
inserting the values in the above equation
T = (2 x 3.14) √(0.71 kg/100 N/m)
T = (6.28) √(0.0071 sec²)
T = (6.28) (0.084) sec
T = 0.53 sec
hence the correct choice is D) 0.53
Answer:
I believe the answer is triangle
Hope it helps!
Answer:
Explanation:
Momentum P = Mass x Velocity
M = 4.5kg
V = 7m/s
4.5kg x 7m/s
= 31.5xkgm/s
L=IW( Angular momentum) at stationary origin (0,0)
I = 1/2 x Mr^2
L = 1/2 x 4.5x 31.5
L = 70.8kgm/s
At stationary point, (0,0) No coordinate exist
Answer:
3.6 kHz
Explanation:
The pipes behave like a closed pipe . The end open is the end of the air canal outside the ear and the closed end is the eardrum.
The first harmonic will be as seen in the figure attached.
The length of the first harmonic will be λ/4.
λ/4=2.4 cm
λ=2.4 * 4=9.6 cm 0.096 m
Speed of Sound- 344 m/s(in air)
velocity(v) * Time Period(T) = Wavelength (λ)
Also, Time Period(T)= \frac{\textrm{1}}{\textrm{Frequency(f)}}
\frac{\textrm{Velocity}}{\textrm{Wavelength}}=\frac{\textrm{1}}{\textrm{Time Period}} =Frequency
Plugging in the values into the equation,
Frequency =
Hz
= 3583.3 Hz≈3600 Hz= 3.6 kHz
Frequency= 3.6 kHz
Answer:
(B) Resistor only
Explanation:
Alternating Current: These are currents that changes periodically with time.
An LRC Ac circuit is an AC circuit that contains a Resistor, a capacitor and an inductor, connected in series.
In a purely resistive circuit, current and voltage are in phase.
In a purely capacitive circuit, the current leads the voltage by π/2
In a purely inductive circuit, the current lags the voltage by π/2.
Therefore when a alternating current is set up in LRC circuit, in the resistor, the current and the voltage are in phase.
The right option is (B) Resistor only.