The resultant of the two forces is about 170 N.
<h3>What is the resultant force?</h3>
The term resultant force has to do with the single force that has the same magnitude and direction as two or more forces acting together.
In this case, the both forces are acting in the forward direction. This implies that the resultant force is 90 N + 80 N = 170 N.
Learn more about resultant force:brainly.com/question/16380983
#SPJ1
Answer:
Vf = 210 [m/s]
Av = 105 [m/s]
y = 2205 [m]
Explanation:
To solve this problem we must use the following formula of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 0 (released from the rest)
g = gravity acceleration = 10 [m/s²]
t = time = 21 [s]
Vf = 0 + (10*21)
Vf = 210 [m/s]
Note: The positive sign for the gravity acceleration means that the object is falling in the same direction of the gravity acceleration (downwards)
The average speed is defined as the sum of the final speed plus the initial speed divided by two. (the initial velocity is zero)
Av = (210 + 0)/2
Av = 105 [m/s]
To calculate the distance we must use the following equation of kinematics

44100 = 20*y
y = 2205 [m]
Answer:
So, the force, F is the agent which provides the basic property of motion or rest to the body.While, the car is more obviously to have a mass, m and that the angle withe road or surface is also given which is normal to the road(i.e angle =90 degree). Then we say that lets say that the car is moving with the constant velocity of 20 m/sec and its kept unchanged by the car. So, we have the mass, m as 1 kg for the car and the value of the gravity we have the g=9.8 m/sec.
Now,
We have F=ma,
and a=v/t,
so we can have another equation for it as,
Now, providing the required data to, it; ∴t =2 sec,
F=(1)×(20/2),
- So, the car would be acting the force,F of about 10 N while the car is present on the lower region of the track.
Answer:
1.11 dioptre
Explanation:
= Distance of the image = - (125 - 2) = - 123 cm
= Distance of the object = 54 - 2 = 52 cm
= Focal length of the lens
Using the equation


cm
Power of the lens is given as


Dioptre
Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is 
Explanation:
From the question we are told that
The initial point is 
The terminal point is 
Generally the magnitude of the vector is mathematically represented as

=> 
=> 