Particles vibrate parallel to the direction the sound travels. It's a longitudinal wave.
The value of the second charge is 1.2 nC.
<h3>
Electric potential</h3>
The work done in moving the charge from infinity to the given position is calculated as follows;
W = Eq₂
E = W/q₂
<h3>Magnitude of second charge</h3>
The magnitude of the second charge is determined by applying Coulomb's law.

Thus, the value of the second charge is 1.2 nC.
Learn more about electric potential here: brainly.com/question/14306881
Answer = 330 m/s
The wave equation is as follows:
Wave speed = wavelength x frequency
The known values are:
Wavelength = 3m
Frequency = 110 Hz
Substitute the known values into the wave equation to find the wave speed.
Wave speed = 3 x 110
Wave speed = 330 m/s
Answer:
1250 J
Explanation:
Work is said to be done when a force causes an object to move over a distance. The amount of work done (W) is calculated by multiplying the force by the distance traveled.
That is;
W = F × d
Where;
W = work done (J or N/m)
F = force (N)
d = distance (m)
Based on the information provided in this question, F = 5000N, d = 0.25m
Hence;
W = F × d
W = 5000 × 0.25
W = 1250J
Therefore, 1250Joules of work is done by the jack.
<span>The charged balloon will stick to a neutral wall because of the Static Electricity:
</span>
The matter is formed by atoms and these atoms are composed of electrons, protons and neutrons (the electrons have a negative charge, the protons have a positive charge and the neutrons have no charge).
As the balloon is charged (It gained electrons), and the charge of the same sign repel each other, when it approaches the wall, the electrons of this wall will move away, and the positive charges (protons) will remain in the nearest area to the balloon. As the charges of different signs are attracted, the balloon will be stuck to the wall.