Answer:
F = 9.82 N
Explanation:
given,
Force x-component = 5.69 N
Force y-component = 8 N
magnitude of force = ?
Resultant of force




F = 9.82 N
Hence, the magnitude of force is equal to 9.82 N
This is the answer: Fossil's found in Susan's yard are from prehistoric times.
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
By
vector addition.
In fact, velocity is a vector, with a magnitude intensity, a direction and a verse, so we can't simply do an algebraic sum of the two (or more velocities).
First we need to decompose each velocity on both x- and y-axis (if we are on a 2D-plane), then we should do the algebraic sum of all the components on the x- axis and of all the components on the y-axis, to find the resultants on x- and y-axis. And finally, the magnitude of the resultant will be given by

where Rx and Rx are the resultants on x- and y-axis. The direction of the resultant will be given by

where

is its direction with respect to the x-axis.
Answer:
1.64 * 10^(-5) m
Explanation:
Parameters given:
Angular separation, θ = 0.018 rad
Wavelength, λ = 589 nm = 5.89 * 10^(-7) m
The angular separation when there are 2 slots is given as
θ = λ/2d
where d = separation between slits
d = λ/2θ
d = (589 * 10^(-9))/(2 * 0.018)
d = 1.64 * 10^(-5) m