Answer:
a.) a = 0 ms⁻²
b.) a = 9.58 ms⁻²
c.) a = 7.67 ms⁻²
Explanation:
a.)
Acceleration (a) is defined as the time rate of change of velocity
Given data
Final velocity = v₂ = 0 m/s
Initial velocity = v ₁ = 0 m/s
As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,
a = 0 ms⁻²
b.)
Given data
As the space shuttle start from rest, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 8 min = 480 s
By the definition of Acceleration (a)

a = 9.58 ms⁻²
c.)
Given data
As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 10 min = 600 s
By the definition of Acceleration (a)

a = 7.67 ms⁻²
Answer:
The velocity of the skateboard is 0.774 m/s.
Explanation:
Given that,
The spring constant of the spring, k = 3086 N/m
The spring is stretched 18 cm or 0.18 m
Mass of the student, m = 100 kg
Potential energy of the spring, 
To find,
The velocity of the car.
Solution,
It is a case of conservation of energy. The total energy of the system remains conserved. So,






v = 0.774 m/s
So, the velocity of the skateboard is 0.774 m/s.
Answer: 2200J
Explanation:
M = 44kg
V = 10m/s
K.E =?
K.E = 1/2MV2 = 1/2 x 44 x (10)^2
K.E = 22 x 100
K.E = 2200J
Answer:
1.42
Explanation:
<em> got it right on my homework </em>
Explanation:
Consider the kinematic equation,

where x is the distance traveled, v is the initial velocity, a is the acceleration and t is time. By plugging in known values and solving for x,

through simple algebra we get

where this is the distance traveled in meters.