Answer:

Explanation:
Given that,
The speed of an electromagnetic wave traveling in a transparent nonmagnetic substance is given by :

Where
k is the dielectric constant of the substance.
v is the speed of light in water


So, the speed of light in water is 
Angular momemtum : mass * tangential speed * distance to the center = 50*2.1*3.6=37800 J.s
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Answer:
1 m/s
Explanation:
Impulse = Change in momentum
Force × Time = Mass(Final velocity) - Mass(Initial Velocity)
(1.0)(1.0) = (1.0)(Final Velocity) - (1.0)(0)
Final velocity = <u>1 m/s</u>
When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)