Answer:
K8S4O16 or K8(SO4)4 depending on if the SO4 is supposed to represent sulfate or not
Explanation:
Find the molar mass of K2SO4 first:
2K + S + 4O ≈ 174 g/mol
Divide the goal molar mass of 696 by the molar mass of the empirical formula:
696 / 174 = 4
This means you need to multiply everything in the empirical formula by 4:
K2SO4 --> K8S4O16 or K8(SO4)4 depending on if the SO4 is for sulfate or not
Sgshjagajavajsfysbsjavajababhahshs
Answer:
<u><em>The correct answer is:</em></u>
<h3><u><em>
Option D: Evapotranspiration </em></u></h3>
<u><em>Water is removed both from the plants and the soil. Evapotranspiration is a process by which the water is removed from plants and ground and is added back into the atmosphere. From ground, water is removed in the form of evaporation from the soil. And from plants the water is removed by transpiration. Hence the term Evapotranspiration.</em></u>
Answer:
Receptor
Explanation:
Neurotransmitters are defined as chemical messengers that carry, stimulate and balance signals between neurons, or nerve cells and other cells in the body.
After release, the neurotransmitter crosses the synaptic gap and binds to the receptor site on the other neuron, stimulating or inhibiting the receptor neuron depending on what the neurotransmitter is. Neurotransmitters act as a key and the receptor site acts as a block. It takes the right key to open specific locks. If the neurotransmitter is able to function at the receptor site, it will cause changes in the recipient cell.
The "first-class" neurotransmitter receptors are ligand-activated ion channels, also known as ionotropic receptors. They undergo a change in shape when the neurotransmitter turns on, causing the channel to open. This can be an excitatory or inhibitory effect, depending on the ions that can pass through the channels and their concentrations inside and outside the cell. Ligand-activated ion channels are large protein complexes. They have certain regions that are binding sites for neurotransmitters, as well as membrane segments to make up the channel.
I have attached the answer
remember that when the solution is acidic, pH lower than 7. there are extra H+ that the amino acid can take. the basic part of the amino acid takes this extra hydrogen (the nitrogen).
when the pH is higher than 7, basic, there are not much H+ available. the amino acid loses a H+. the acid part of the amino acid loses the H (the carboxylic part).