An electron in motion generates an electromagnetic field and is in turn deflected by external electromagnetic fields. When an electron is accelerated, it can absorb or radiate energy in the form of photons. Electrons, together with atomic nuclei made up of protons and neutrons, make up the
Answer:
D.
Explanation:
Deciding whether the best product has been designed,should be the last step.
Answer: 714 g Al2O3
Explanation: Solution attached
First convert mass of O2 to moles
Do the mole ratio between O2 and Al2O3 from the balanced equation.
Convert moles of Al2O3 to mass using its molar mass.
Answer:
![[H^{+}] = 0.761 \frac{mol}{L}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%200.761%20%5Cfrac%7Bmol%7D%7BL%7D)
![[OH^{-}]=1.33X10^{-14}\frac{mol}{L}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D1.33X10%5E%7B-14%7D%5Cfrac%7Bmol%7D%7BL%7D)

Explanation:
HCl and HNO₃ both dissociate completely in water. A simple method is to determine the number of moles of proton from both these acids and dividing it by the total volume of solution.
. V_{HCl}(L) \\ n_{H^{+} } from HNO_{3} = [HNO_{3}](\frac{mol}{L}). V_{HNO_{3}}(L)](https://tex.z-dn.net/?f=n_%7BH%5E%7B%2B%7D%20%7D%20from%20HCl%20%3D%20%5BHCl%5D%28%5Cfrac%7Bmol%7D%7BL%7D%29.%20V_%7BHCl%7D%28L%29%20%20%5C%5C%20n_%7BH%5E%7B%2B%7D%20%7D%20from%20HNO_%7B3%7D%20%20%3D%20%5BHNO_%7B3%7D%5D%28%5Cfrac%7Bmol%7D%7BL%7D%29.%20V_%7BHNO_%7B3%7D%7D%28L%29)
Here, n is the number of moles and V is the volume. From the given data moles can be calculated as follows






For molar concentration of hydrogen ions:
![[H^{+}] = \frac{n_{H^{+}}(mol)}{V(L)}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%20%3D%20%5Cfrac%7Bn_%7BH%5E%7B%2B%7D%7D%28mol%29%7D%7BV%28L%29%7D)
![[H^{+}] = \frac{0.761}{1.00}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B0.761%7D%7B1.00%7D)
![[H^{+}] = 0.761 \frac{mol}{L}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%200.761%20%5Cfrac%7Bmol%7D%7BL%7D)
From dissociation of water (Kw = 1.01 X 10⁻¹⁴ at 25°C) [OH⁻] can be determined as follows
![K_{w} = [H^{+} ][OH^{-} ]](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%20%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%20%5D)
![[OH^{-}]=\frac{Kw}{[H^{+}] }](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D%5Cfrac%7BKw%7D%7B%5BH%5E%7B%2B%7D%5D%20%7D)
![[OH^{-}]=\frac{1.01X10-^{-14}}{0.761 }](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D%5Cfrac%7B1.01X10-%5E%7B-14%7D%7D%7B0.761%20%7D)
![[OH^{-}]=1.33X10^{-14}\frac{mol}{L}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D1.33X10%5E%7B-14%7D%5Cfrac%7Bmol%7D%7BL%7D)
The pH of the solution can be measured by the following formula:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


Answer: 15.8 g of
will be required to produce 1.60 grams of 
Explanation:
To calculate the moles :

According to stoichiometry :
As 1 mole of
is given by = 2 moles of 
Thus 0.05 moles of
is given by =
of 
Mass of 
Thus 15.8 g of
will be required to produce 1.60 grams of 