Answer:
See below
Explanation:
.75 = 1/2^(40/h)
log .75 / ( log 1/2) = 40 / h
<u>h = half life = 96.37683 min</u>
Answer:
8.2 x 106^-11
Explanation:
To begin this problem you must remember the basic rule of scientific notation, which is, must be between 1-10. .000000000082 is much smaller than 1. However by moving the decimal 11 spots to the right, we can make it 8.2
Continue to move the decimal to the right until the value is in the 1-10 range. Make sure to count the moves to the right.
Once the decimal is in the right spot count the spots moved.
Since the number is wayyy smaller than the answer given the number will be negative 10^-11, in order to make it what is was before.
Density can be calculated using the following rule:
density=mass/volume
therefore,
volume=mass/density
we have mass=0.451g and density=0.824g/ml
substituting in the above equation, we can calculate the volume as follows:
volume = 0.451/0.824 = 0.547 ml
According to <span>Gay-Lussac's Law the temperature and Pressure are directly proportional to each other if the amount and volume of given gas are kept constant.
Mathematically for initial and final states it is expressed as,
P</span>₁ / T₁ = P₂ / T₂ ----- (1)
Data Given;
P₁ = 1.5 atm
T₁ = 35 °C + 273 = 308 K
P₂ = ?
T₂ = 0 °C + 273 = 273 K
Solving Eq. 1 for P₂,
P₂ = P₁ T₂ / T₁
Putting values,
P₂ = (1.5 atm × 273 K) ÷ 308 K
P₂ = 1.32 atm
Result:
As the temperature is decreased so the pressure also decreases from 1.5 atm to 1.32 atm. Therefore the bag will contract.