A. helium, neon and argon, because they are in the same group or column
Answer:
The mass of tin is 164 grams
Explanation:
Step 1: Data given
Specific heat heat of tin = 0.222 J/g°C
The initial temeprature of tin = 80.0 °C
Mass of water = 100.0 grams
The specific heat of water = 4.184 J/g°C
Initial temperature = 30.0 °C
The final temperature = 34.0 °C
Step 2: Calculate the mass of tin
Heat lost = heat gained
Qlost = -Qgained
Qtin = -Qwater
Q = m*c*ΔT
m(tin)*c(tin)*ΔT(tin) = -m(water)*c(water)*ΔT(water)
⇒with m(tin) = the mass of tin = TO BE DETERMINED
⇒with c(tin) = the specific heat of tin = 0.222J/g°C
⇒with ΔT(tin) = the change of temperature of tin = T2 - T1 = 34.0°C - 80.0°C = -46.0°C
⇒with m(water) = the mass of water = 100.0 grams
⇒with c(water) = the specific heat of water = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 34.0° C - 30.0 °C = 4.0 °C
m(tin) * 0.222 J/g°C * -46.0 °C = -100.0g* 4.184 J/g°C * 4.0 °C
m(tin) = 163.9 grams ≈ 164 grams
The mass of tin is 164 grams
Answer:
680g of mercury is the mass of the sample of mercury.
Explanation:
Density is an unit used to relates the mass of an object per unit of volume.
For example, in the problem, the density of mercury is 13.6g/cm³, as cm³ is equal to milliliters, mL, the density is: 13.6g/mL.
If you have 50.0mL of mercury, the mass is:
50.0mL * (13.6g / mL) =
<h3>680g of mercury is the mass of the sample of mercury.</h3>
The question that you asked has already been answered
First, assume the order of the given reaction is n, then the rate of reaction i.e. ![\frac{dx}{dt}=k\times[A]^{n}](https://tex.z-dn.net/?f=%5Cfrac%7Bdx%7D%7Bdt%7D%3Dk%5Ctimes%5BA%5D%5E%7Bn%7D)
where, dx is change in concentration of A in small time interval dt and k is rate constant.
According to units of rate constant, the reaction is of second order.
(second order formula)
Put the values,

t= 587.9 s
Hence, time taken is 587.9 s