Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
you cant add 1 to 5x, so subtract 1 on both sides leaving you with 1 + 5x < 4 that equals 5x < 3 -1 -1
then divide 5 from both sides 5x < 3 This leaves 5 5
you with x < 3/5
Answer:
Step-by-step explanation: