4.48 mol Cl2. A reaction that produces 0.35 kg of BCl3 will use 4.48 mol of Cl2.
(a) The <em>balanced chemical equation </em>is
2B + 3Cl2 → 2BCl3
(b) Convert kilograms of BCl3 to moles of BCl3
MM: B = 10.81; Cl = 35.45; BCl3 = 117.16
Moles of BCl3 = 350 g BCl3 x (1 mol BCl3/117.16 g BCl3) = 2.987 mol BCl3
(c) Use the <em>molar ratio</em> of Cl2:BCl3 to calculate the moles of Cl2.
Moles of Cl2 = 2.987 mol BCl3 x (3 mol Cl2/2 mol BCl3) = 4.48 mol Cl2
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.
Hi there
In order for an electron to jump into a higher energy state, it must first absorb energy (heat, light, etc).
When an electron goes back down to the ground state from the excited state, it emits energy usually in the form of a photon.
i hope this helps
Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.