Answer:
0.924 g
Explanation:
The following data were obtained from the question:
Volume of CO2 at RTP = 0.50 dm³
Mass of CO2 =?
Next, we shall determine the number of mole of CO2 that occupied 0.50 dm³ at RTP (room temperature and pressure). This can be obtained as follow:
1 mole of gas = 24 dm³ at RTP
Thus,
1 mole of CO2 occupies 24 dm³ at RTP.
Therefore, Xmol of CO2 will occupy 0.50 dm³ at RTP i.e
Xmol of CO2 = 0.5 /24
Xmol of CO2 = 0.021 mole
Thus, 0.021 mole of CO2 occupied 0.5 dm³ at RTP.
Finally, we shall determine the mass of CO2 as follow:
Mole of CO2 = 0.021 mole
Molar mass of CO2 = 12 + (2×16) = 13 + 32 = 44 g/mol
Mass of CO2 =?
Mole = mass /Molar mass
0.021 = mass of CO2 /44
Cross multiply
Mass of CO2 = 0.021 × 44
Mass of CO2 = 0.924 g.
Answer:
The answer to your question is Dermis
Explanation:
Below the epidermis is the dermis. This is where our blood vessels, nerve endings, sweat glands, and hair follicles are.
Electrical to chemical energy
Explanation:
If the batteries in a flashlight are rechargeable, the energy conversion that would take place to recharge the battery is from electrical to chemical energy.
- A battery is an electrochemical cell in which chemical reactions produces electrical currents.
- This is a typical energy conversion from chemical to electrical energy.
- When such batteries are to be recharged, the revere process is followed.
- Electrical energy are used to drive chemical reactions.
- This in turn makes the battery recharged and on its own, it can further chemical reactions to produce electrical energy.
- During charging, the potential of the battery increases.
learn more:
Electrochemical reactions brainly.com/question/12174850
#learnwithBrainly
Explanation:
The balanced equation of the reaction is given as;
Mg(OH)2 (s) + 2 HBr (aq) → MgBr2 (aq) + 2 H2O (l)
1. How many grams of MgBr2 will be produced from 18.3 grams of HBr?
From the reaction;
2 mol of HBr produces 1 mol of MgBr2
Converting to masses using;
Mass = Number of moles * Molar mass
Molar mass of HBr = 80.91 g/mol
Molar mass of MgBr2 = 184.113 g/mol
This means;
(2 * 80.91 = 161.82g) of HBr produces (1 * 184.113 = 184.113g) MgBr2
18.3g would produce x
161.82 = 184.113
18.3 = x
x = (184.113 * 18.3 ) / 161.82 = 20.8 g
2. How many moles of H2O will be produced from 18.3 grams of HBr?
Converting the mass to mol;
Number of moles = Mass / Molar mass = 18.3 / 80.91 = 0.226 mol
From the reaction;
2 mol of HBr produces 2 mol of H2O
0.226 mol would produce x
2 =2
0.226 = x
x = 0.226 * 2 / 2 = 0.226 mol
3. How many grams of Mg(OH)2 are needed to completely react with 18.3 grams of HBr?
From the reaction;
2 mol of HBr reacts with 1 mol of Mg(OH)2
18.3g of HBr = 0.226 mol
2 = 1
0.226 = x
x = 0.226 * 1 /2
x = 0.113 mol
Answer:
a
Explanation:
a mixture is a material made up of two or more different substances which are not chemically combined. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the form of solutions, suspensions and colloids.