Answer:
(a) 0.063 m/s
(b) 1.01 m/s
Explanation:
rate of volume flow, V = 4 x 10^-6 m^3/s
(a) radius, r = 4.5 x 10^-3 m
Let the speed of blood is v.
So, V = A x v
where A be the area of crossection of artery
4 x 10^-6 = 3.14 x 4.5 x 10^-3 x 4.5 x 10^-3 x v
v = 0.063 m/s
Thus, the speed of flow of blood is 0.063 m/s .
(b) Now r' = r / 4 = 4.5 /4 x 10^-3 m = 1.125 x 10^-3 m
Let the speed is v'.
So, V = A' x v'
4 x 10^-6 = 3.14 x 1.125 x 10^-3 x 1.125 x 10^-3 x v'
v' = 1.01 m/s
Thus, the speed of flow of blood is 1.01 m/s .
A steering wheel, a wrench, a screwdriver, and the back wheel of a bike are all examples of tools with a wheel and axle.
Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>
Formula of kinetic energy = 0.5*mass*velocity squared so the answer is 11008j
Answer:
metal> metalloids >nonmetals (Electrical conductivity)
Explanation:
Electrical conductivity of objects can be compared by the bonding energy of electrons in them.
Metals have less bonding energy of electrons, so even at room temperature their are significant number of free electrons to carry electrical current.
Nonmetals have a very high bonding energy of electrons, so at room temperature negligible number of free electrons are present so electrical conductivity is very low.
Metalloids have both metallic and non metallic features. The electron bonding energy falls in between that of metals and nonmetals. So electrical conductivity also lies in between metals and nonmetals.