Explanation:
Given that,
Terminal voltage = 3.200 V
Internal resistance 
(a). We need to calculate the current
Using rule of loop


Where, E = emf
R = resistance
r = internal resistance
Put the value into the formula


(b). We need to calculate the terminal voltage
Using formula of terminal voltage

Where, V = terminal voltage
I = current
r = internal resistance
Put the value into the formula


(c). We need to calculate the ratio of the terminal voltage of voltmeter equal to emf


Hence, This is the required solution.
Answer:
Energy due to air resistance = 31.8 Joules
Explanation:
According to the law of conservation of energy, energy can neither be created nor destroyed but can be transformed from one form to another
Kinetic Energy + Energy due to air resistance = Potential energy..........(1)
If there is no energy loss due to air resistance, potential energy = kinetic energy
mass, m = 1.5 kg
height, h = 4.0 m
speed, v = 6 m/s
Kinetic energy = 0.5 mv²
Kinetic energy = 0.5 * 1.5 * 6²
Kinetic energy = 27 Joules
Potential Energy = mgh
Potential energy = 1.5 * 9.8 * 4
Potential energy = 58.8 Joules
From equation (1)
27 + Energy due to air resistance = 58.8
Energy due to air resistance = 58.8 - 27
Energy due to air resistance = 31.8 Joules
Answer:
1,200 watts
Explanation:
1 watt = 1 Joule (J) of work / second
So, 3600 Joules of work / 3 seconds is:
3600 J / 3 seconds = 1,200 watts
Answer:
A) False
B) False
C) True
D) False
Explanation:
A) False, because when leaving the field, the coil experiences a magnetic force to the right.
B) When the loop is entering the field, the magnetic flux through it will increase. Thus, induced magnetic field will try to decrease the magnetic flux i.e. the induced magnetic field will be opposite to the applied magnetic field. The applied magnetic field is into the plane of figure and thus the induced magnetic field is out of the plane of figure. Due to that reason, the current would be counterclockwise. So the statement is false.
C) When the loop is leaving the field, the magnetic flux through the loop will decrease. Thus, induced magnetic field will try to increase the magnetic flux i.e. the inducued magnetic field will be in the same direction as the applied magnetic field. The applied magnetic field is into the plane of figure and thus the induced magnetic field is also into the plane of figure. Due to that reason, the current would be clockwise. So the statement is true.
D) False because when entering the field magnetic force will be toward left side