The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.
The scientific revolution is a concept which explains how the developments of science (biology, chemistry, physics and etc.) changed the way we (society) think about nature. I hope this helps! :)
6x8 = 48 feet
you can jump 48 feet on the moon
Answer:
The following options are true based on the properties of electric field;
a) Electric field lines near positive point charges radiate outward.
b) The electric force acting on a point charge is proportional to the magnitude of the point charge.
d) In a uniform electric field, the field lines are straight, parallel, and uniformly spaced.
Explanation:
From option b) From coulomb's law F = Kq1q2r/r2
This is a Physics question where we need to figure out how many meters Cam can run per second. To figure this out we divide the distance by the change in time.
40/5.79 = 6.9 meters per second approximately.