Answer:
The Velocity at which it travels, and the Distance from start to finish.
Explanation:
Calculate V*D=T which is Velocity*Distance=Time.
Answer:
C
Explanation:
An object in motion will stay in motion unless acted on by a net positive or negative force.
For answer A. If the object were to be in an orbit, it would inevitably accelerate due to it being acted on by the gravitational force from the object it is orbiting. At different points in the orbit, the object will move at different speeds and continuously transfer between kinetic and potential energy.
For answer B. The object would would not stop their motion. In order for the object to lose energy, it would have to transfer it through friction or through its interaction with a gravitational field.
For answer D. No energy is "required" to maintain constant motion unless the object is willingly fighting against a resistive force like friction or a graviational well.
Given that,
Voltage = 10 volt
Suppose, The three resistance is connected in parallel and each resistance is 12 Ω. find the current in the electric circuit.
We need to calculate the equivalent resistance
Using formula of parallel

Put the value into the formula



We need to calculate the current in the circuit
Using ohm's law


Where, V = voltage
R = resistance
Put the value into the formula


Hence, The current in the circuit is 2.5 A
Since you already gave us the weight of the 2.5-kg box,
we don't even need to know what the distance is, just
as long as it doesn't change.
Look at the formula for the gravitational force:
F = G m₁ m₂ / R² .
If 'G', 'm₁' (mass of the Earth), and 'R' (distance from the Earth's center)
don't change, then the Force is proportional to m₂ ... mass of the box,
and you can write a simple proportion:
(6.1 N) / (2.5 kg) = (F) / (1 kg)
Cross-multiply: (6.1 N) (1 kg) = (F) (2.5 kg)
Divide each side by (2.5 kg): F = (6.1N) x (1 kg) / (2.5 kg) = 2.44 N .
Answer:Velocity can be represented by an arrow, with the length of the arrow representing speed and the way the arrow points representing direction. Objects have the same velocity only if they are moving at the same speed and in the same direction. ... The SI unit for velocity is m/s, plus the direction the object is traveling.