1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
5

Anyone know the answer? 12 min left!

Physics
1 answer:
s2008m [1.1K]3 years ago
3 0

Answer:

Linear, positive relationship

Explanation:

The slope of the line is positive. (going up)

You might be interested in
1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction
Kobotan [32]

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

5 0
3 years ago
A man holding a rock sits on a sled that is sliding across a frozen lake (negligible friction) with a speed of 0.480 m/s. The to
SpyIntel [72]
This is a problem of conservation of momentum

Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s

A) man throws the rock forward

=>

rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man

sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?

Conservation of momentum:
momentum before throw = momentum after throw

46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2

=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s

B) man throws the rock backward

this changes the sign of the velocity, v2 = -14.5 m/s

 46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2

v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s


3 0
3 years ago
Using knowledge of states of matter,write a message about the importance of science in our society​
oee [108]

Answer:

उव्ग्वुव ह्व्झ एउएइहे एइएइएइएएइ सिसुब्स्सी बीस सिस इस्ब एइब

Explanation:

?उग्व्ब्वु विब्सिए इसिग्व विद्बिअब्द सिह्व्व इस्ब्व दिव्ब्स विह्द ऐद्जिइ सुउगव्दी सिइगैगे क्ज्गैइव अजिव्व्ज्व्स कैह्द अजि ह्ज्फ्ज इअह इकुगै ईग इअबे अजिव्ब जैइअब इऐहे ऐइहे ऐइग्गे अत्व्ब ओप्झब रोज दिधिए ऊइफ्ब इसुहद ईउहे सिउउअ दिइब्द स्सिउए ऐइहे सिएय्व एउविये एइव्वे

5 0
2 years ago
What would be the first thing you would do if your clothes caught fire while working in a laboratory? select one of the options
Ksivusya [100]
<span>c. run towards a source of water to extinguish the fire </span>
3 0
4 years ago
Sound wave A has a lower frequency than sound wave B, but both waves
Keith_Richards [23]

Answer: C

Explanation: Amplitude controls loudness, and frequency controls pitch. The more frequent the higher pitch.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Newton's law of universal gravitation states that every object in the universe attracts every other object. true or false.
    8·2 answers
  • Sal connected four light bulbs in a parallel circuit. If Sal adds another light bulb, what is true about the current in each bul
    11·2 answers
  • A string tied between two post is oscillating at 3Hz. A student determines the standing waves have a length of 4 meters. What is
    9·1 answer
  • A particle moves along a straight line and its position at time t is given by
    6·1 answer
  • What is the range of these data? 6,9,2,12,3,5,9​
    9·2 answers
  • What is the change in the direction of a wave when it passes obliquely from one medium to another called?
    7·1 answer
  • 1.Why does the water vapour in clouds condense?
    5·1 answer
  • It is 32 degrees F outside. What is this in Kelvin?​
    8·1 answer
  • What is the net force on a bathroom scale when a 150-pound person stands on it
    12·1 answer
  • how to sketch the following?:Sketch ray diagrams for a spherical convex lens with objects at the following distances. (Submit a
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!