Answer:
The time rate of change of flux is

Explanation:
Given :
Current
A
Area of plate

Plate separation
m
(A)
First find the capacitance of capacitor,

Where 

F
But 
Where 


Now differentiate above equation wrt. time,



Therefore, the time rate of change of flux is

Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
The rms current in the transmission lines is I = 487.18 A.
The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force is used to represent the source. it is the rectangular root of the time average of the voltage squared.
Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.
Electric power is by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values
power = 38 M watt
rms voltage = 78 K v
power = IV
I = power/V
I = (38 * 1000000)/78*1000
I = 487.18 A.
Learn more about rms current here:-brainly.com/question/20913680
#SPJ4