Answer:
The Bohr Model is very limited in terms of size. Poor spectral predictions are obtained when larger atoms are in question. It cannot predict the relative intensities of spectral lines. It does not explain the Zeeman Effect, when the spectral line is split into several components in the presence of a magnetic field.
Explanation:
Near water, change in elevation, or change in latitude.
PH is the logarithmic measure of the concentration of hydrogen ions in solution. In an aqueous system, the lowest possible concentration of H+ ions (least acidic) is 1x 10^-14. The -log(1x10^-14) = pH of 14
<span>6.38x10^-2 moles
First, let's determine how many moles of gas particles are in the two-liter container. The molar volume for 1 mole at 25C and 1 atmosphere is 24.465 liters/mole. So
2 L / 24.465 L/mol = 0.081749438 mol
Now air doesn't just consist of nitrogen. It also has oxygen, carbon dioxide, argon, water vapor, etc. and the total number of moles includes all of those other gasses. So let's multiply by the percentage of nitrogen in the atmosphere which is 78%
0.081749438 mol * 0.78 = 0.063764562 mol.
Rounding to 3 significant figures gives 6.38x10^-2 moles</span>