<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O
A b and e is are the answers
Answer:
K = 137.55 atm/M.
Explanation:
- The relationship between gas pressure and the concentration of dissolved gas is given by Henry’s law:
<em>P = (K)(C)</em>
where P is the partial pressure of the gaseous solute above the solution (P = 1.0 atm).
k is a constant (Henry’s constant).
C is the concentration of the dissolved gas (C = 7.27 x 10⁻³ M).
∴ K = P/C = (1.0 atm)/(7.27 x 10⁻³ M) = 137.55 atm/M.