Answer:
= 913.84 mL
Explanation:
Using the combined gas laws
P1V1/T1 = P2V2/T2
At standard temperature and pressure. the pressure is 10 kPa, while the temperature is 273 K.
V1 = 80.0 mL
P1 = 109 kPa
T1 = -12.5 + 273 = 260.5 K
P2 = 10 kPa
V2 = ?
T2 = 273 K
Therefore;
V2 = P1V1T2/P2T1
= (109 kPa × 80 mL × 273 K)/(10 kPa× 260.5 K)
<u>= 913.84 mL</u>
The balanced equation for the neutralisation reaction is as follows
2H₃PO₄ + 3Mg(OH)₂ --> Mg₃(PO₄)₂ + 6H₂O
stoichiometry of H₃PO₄ to H₂O is 2:6
number of H₃PO₄ moles reacted - 0.24 mol
if 2 mol of H₃PO₄ form 6 mol of H₂O
then 0.24 mol of H₃PO₄ forms - 6/2 x 0.24 = 0.72 mol of H₂O
therefore 0.72 mol of H₂O are formed
Answer:
The larger the number of the energy level, the farther it is from the nucleus. Electrons that are in the highest energy level are called valence electrons. Within each energy level is a volume of space where specific electrons are likely to be located.
Answer:
A) SiO2 is the limiting reactant
B) Theoretical yield= 72333.3g
C) % yield =91.5%
Explanation:
SiO2(s) + 2C(s) --------------> Si(s) + 2CO(g)
n(SiO2)= 155000/60 = 2583.33 mols
n(C)= 79000/12= 3291.66 mols
a)SiO2 is the limiting reactant
According to the balanced reaction equation,
60g of SiO2 produced 28g of SiO2
155000g of SiO2 will produce 155000×28/60= 72333.3g
Therefore theoretical yield of Si= 72333.3g
% yield= 66200/72333.3×100/1 =91.5%
Answer:
5.995 psi
Explanation:
30 psi = 2.04 atm
75 mL = 0.075 L
15 mL = 0.015 L
0.075 L/ 2.04 atm = 0.015 L/x
0.075x = 0.0306
x = 0.408
0.408 atm = 5.995 psi