V ( HCl ) = 16.4 mL / 1000 => 0.0164 L
M( HCl) = ?
V( KOH) = 12.7 mL / 1000 => 0.0127 L
M(KOH) = 0.620 M
Number of moles KOH:
n = M x V
n = 0.620 x 0.0127
n = 0.007874 moles of KOH
number of moles HCl :
<span>HCl + KOH = H2O + KCl
</span>
1 mole HCl ------ 1 mole KOH
<span>? mole HCl--------0.007874 moles KOH
</span>
moles HCl = 0.007874 * 1 / 1
= 0.007874 moles of HCl
M = n / V
M = 0.007874 / <span>0.0164
</span>= 0.480 M
Answer (2)
hope this helps!
The answer is: The engine will run inefficiently APEX....
No if you pass the rest you will not have to retake the credit trust me i know
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Answer:
The answer to your question is: SiCl₄
Explanation:
Data
amount of Si 1.71 g
amount of Cl 8.63 g
MW Si = 28 g
MW Cl = 35.5
Process (rule of three)
For Si For Cl
28 g of Si ------------------ 1 mol 35.5 g of Cl --------------- 1 mol
1.71g of Si --------------- x 8.63 g of Cl -------------- x
x = 1.71 x 1 / 28 = 0.06 mol x = 8.63 x 1 / 35.5 = 0.24 mol
Now, divide both results by the lowest of them.
Si = 0.06 mol / 0.06 = 1 molecule of Si Cl = 0.24 / 0.06 = 4 molecules of Cl
Finally
Si₁ Cl₄ or SiCl₄