Answer:
Mass of NaBr produced = 23.67 g
Explanation:
Given data:
Mass of AgBr = 42.7 g
Mass of NaBr produced = ?
Solution:
Chemical equation:
2Na₂S₂O₃ + AgBr → NaBr + Na₃(Ag(S₂O₃)₂
Number of moles of AgBr:
Number of moles = mass/molar mass
Number of moles = 42.7 g/ 187.7 g/mol
Number of moles = 0.23 mol
now we will compare the moles of AgBr with NaBr.
AgBr : NaBr
1 : 1
0.23 : 0.23
Mass of NaBr:
Mass = number of moles × molar mass
Mass = 0.23 mol × 102.89 g/mol
Mass = 23.67 g
Microwaves use radiant energy to cook the food. They also use electrical to make the microwave work.
-5.
-5 * 2 = -10
-10 + 17 = 7
Answer:
Circuit 4
Explanation:
To know the correct answer to the question given above, we shall determine the current in each circuit. This can be obtained as follow:
For circuit 1:
Resistance (R) = 0.5 ohms
Voltage (V) = 20 V
Current (I) =?
V = IR
20 = I × 0.5
Divide both side by 0.5
I = 20 / 0.5
I = 40 A
For circuit 2:
Resistance (R) = 0.5 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.5
Divide both side by 0.5
I = 40 / 0.5
I = 80 A
For circuit 3:
Resistance (R) = 0.25 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.25
Divide both side by 0.25
I = 40 / 0.25
I = 160 A
For circuit 4:
Resistance (R) = 0.25 ohms
Voltage (V) = 60 V
Current (I) =?
V = IR
60 = I × 0.25
Divide both side by 0.25
I = 60 / 0.25
I = 240 A
SUMMARY
Circuit >>>>>> Current
1 >>>>>>>>>>> 40 A
2 >>>>>>>>>>> 80 A
3 >>>>>>>>>>> 160 A
4 >>>>>>>>>>> 240 A
From the above calculation, circuit 4 has the greatest electric current.
Answer:
I am pretty sure it is visible light