1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julia-pushkina [17]
3 years ago
8

You are driving downhill on a rural road with a 3% grade at a speed of 45 mph. While playing on the side of the road, a child ac

cidentally runs onto the roadway to pick up a ball. At what distance you must first see the child to stop your vehicle before reaching the child? How would this distance be different if you were driving on the same road and at the same speed, but going uphill? Use t
Physics
1 answer:
Dennis_Churaev [7]3 years ago
5 0

Answer: a) 95.07m b) 81.88 m

Explanation:

a)

For finding the distance when vehicle is going downhill we have the formula as:

Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)

Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31

Reaction time= 0.28

So putting values we get

Stop sight distance= 0.28*72.4 *1  + \frac{(0.28*72.4)^{2} }{2*9.81*(0.31-0.03)}

Stop sight distance= 95.07 m

b)

For finding the distance when vehicle is going uphill we have the formula as:

Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)

Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31

Reaction time= 0.28

So putting values we get

Stop sight distance= 0.28*72.4 *1  + \frac{(0.28*72.4)^{2} }{2*9.81*(0.31+0.03)}

Stop sight distance= 81.88 m

You might be interested in
A soccer ball is kicked from the top of one building with a height of H1 = 30.2 m to another building with a height of H2 = 12.0
viktelen [127]

Hi there!

Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.

We also know there was work done on the ball by air resistance that decreased the ball's total energy.

Let's do a summation using the equations:
KE = \frac{1}{2}mv^2 \\\\PE = mgh

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

E_i = \frac{1}{2}mv_i^2 + mg(H_1 - H_2)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

E_f = \frac{1}{2}mv_f^2

And:
W_A = E_i - E_f

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.

Therefore:
W_A = \frac{1}{2}mv_i^2 + mg(H_1 - H_2) -  \frac{1}{2}mv_f^2

Solving for the work done by air resistance:
W_A = \frac{1}{2}(.450)(15.1^2)+ (.450)(9.8)(30.2 - 12) -  \frac{1}{2}(.450)(19.89^2)

W_A = \boxed{42.552 J}

8 0
2 years ago
In which medium does light travel faster: one with a critical angle of 27.0° or one with a critical angle of 32.0°? Explain. (Fo
Eddi Din [679]

Answer:

Among those two medium, light would travel faster in the one with a reflection angle of 32^{\circ} (when light enters from the air.)

Explanation:

Let v_{1} denote the speed of light in the first medium. Let v_{\text{air}} denote the speed of light in the air. Assume that the light entered the boundary at an angle of \theta_{1} to the normal and exited with an angle of \theta_{\text{air}}. By Snell's Law, the sine of \theta_{1}\! and \theta_{\text{air}}\! would be proportional to the speed of light in the corresponding medium. In other words:

\displaystyle \frac{v_{1}}{v_{\text{air}}} = \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})}.

When light enters a boundary at the critical angle \theta_{c}, total internal reflection would happen. It would appear as if the angle of refraction is now 90^{\circ}. (in this case, \theta_{\text{air}} = 90^{\circ}.)

Substitute this value into the Snell's Law equation:

\begin{aligned}\frac{v_{1}}{v_{\text{air}}} &= \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})} \\ &= \frac{\sin(\theta_{c})}{\sin(90^{\circ})} \\ &= \sin(\theta_{c})\end{aligned}.

Rearrange to obtain an expression for the speed of light in the first medium:

v_{1} = v_{\text{air}} \cdot \sin(\theta_{1}).

The speed of light in a medium (with the speed of light slower than that in the air) would be proportional to the critical angle at the boundary between this medium and the air.

For 0 < \theta < 90^{\circ}, \sin(\theta) is monotonically increasing with respect to \theta. In other words, for \!\theta in that range, the value of \sin(\theta)\! increases as the value of \theta\! increases.

Therefore, compared to the medium in this question with \theta_{c} = 27^{\circ}, the medium with the larger critical angle \theta_{c} = 32^{\circ} would have a larger \sin(\theta_{c}). such that light would travel faster in that medium.

4 0
3 years ago
I need help with this
lisabon 2012 [21]
A. Condensation

Hope this helps!!!
5 0
2 years ago
Which one of the following substances is a liquid fuel used in rocket engines?
melomori [17]

There are none on the list you included with your question.

8 0
3 years ago
Read 2 more answers
What is cosmic background radiation?
Kobotan [32]
Cosmic background radiation is electromagnetic radiation from the sky with no discernible source. The origin of this radiation depends on the region of the spectrum that is observed. 
6 0
3 years ago
Read 2 more answers
Other questions:
  • A commuting student leaves home and drives to school at an average speed of 39.0 km/h. After 23.0 min he realizes that he has fo
    5·1 answer
  • The big bang produced an imprint of leftover heat called _____. hydrogen cosmic heat CMB radiation redshift
    5·2 answers
  • You, a 70 kg person, leap from a 10 m tall building and land feet first on a trampoline. The center of the trampoline where you
    8·1 answer
  • What type of eclipse is shown? How do you know?
    6·2 answers
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • Density of water is 1000kg/meter cube. what will be the volume of 35000kg water ​
    6·1 answer
  • A standard baseball has a mass of 144.3 g. Determine the weight, in newtons, of a baseball.
    5·1 answer
  • The sine of the incident angle is 0.217; the sine of the refracted angle is 0.173. Calculate the index of refraction.
    7·2 answers
  • Jim can ride his bike at 12 meters per second. Bob can ride his bike at 10.5 m/s. If they
    14·1 answer
  • How is energy transferred and transformed? and examples with full explanation.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!