True, nuclear reactions, whether they are fission or fusion depend on generating energy by converting a certain amount of mass by breaking the atom or combining two atoms together.
OK. Thank you. That's an impulse of 200 Newton-sec to the left,
telling us that the cart's leftward momentum increases by 200 kg-m/s
(or its rightward momentum decreases by that amount).
Did you have a question to ask ?
Answer:
<em>The horizontal component of the velocity is 49.85 m/s.</em>
Explanation:
<u>Rectangular Components of a Vector</u>
A 2D vector can be expressed in several forms. The rectangular form gives its two components, one for each axis (x,y). The polar form gives the components as the pair (r,θ) being r the magnitude and θ the angle.
When the magnitude and angle of the vector are given, the rectangular components are calculated as follows:


Where v is the magnitude of the vector and θ is the angle with respect to the x positive direction.
The cart is moving at v=55 m/s at θ=25°, thus:


The horizontal component of the velocity is 49.85 m/s.
Answer:
The frecuency is 1.2*10¹¹ Hz.
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time, that is, how many peaks or valleys are repeated in a unit of time. Its unit is s – 1 or hertz (Hz).
The propagation speed is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. It relates the wavelength (λ) and the frequency (f) inversely proportional using the following equation:
v = f * λ.
In this case:
- v= 300,000,000 m/s
- f= ?
- λ= 0.0025 m
Replacing:
300,000,000 m/s= f* 0.0025 m
Solving:
f= 300,000,000 m/s ÷0.0025 m
f= 1.2*10¹¹
= 1.2*10¹¹ Hz
<u><em>The frecuency is 1.2*10¹¹ Hz.</em></u>
Answer:
Option C, It still explains the experimental evidence pertaining to gravity
Explanation:
Please find the attachment