Answer:
(a) 135 kV
(b) The charge chould be moved to infinity
Explanation:
(a)
The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

where 
Difference in potential between the points is
![kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}](https://tex.z-dn.net/?f=kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7B0.2%5Ctext%7B%20m%7D%7D%20-%5Cleft%28%20-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D%20%3D%20%5Cdfrac%7BkQ%7D%7B0.2%5Ctext%7B%20m%7D%7D%20%3D%20%5Cdfrac%7B9%5Ctimes10%5E9%5Ctext%7B%20F%2Fm%7D%5Ctimes3%5Ctimes10%5E%7B-6%7D%5Ctext%7B%20C%7D%7D%7B0.2%5Ctext%7B%20m%7D%7D)

(b)
If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.
![270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]](https://tex.z-dn.net/?f=270%5Ctimes10%5E3%20%3D%20kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7Bx%7D-%5Cleft%28-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D)



The charge chould be moved to infinity
Answer:
118kg
Explanation:
answered
Given
density of the cube= 8050 kg/m3 .
length of the sizes of the cube=24.5 cm
We can convert the length to cm for unit consistency.
It's length =24.5 cm =0.245m
✓ the length of sizes of the cube is the same, then the volume can be calculated as
Volume= L^3
= (0.245m)^3
=0.01470625 m^3
✓ but we know that
Density = mass/ volume
Then,
Mass= (Volume × density)
= (0.01470625)(8050)
= 118 kg
Hence, the mass of the cube is 118 kg
Answer:
(a): The normal force on the car from the track when the car's speed is v= 7.6 m/s is FN= -6696 N.
(b): The normal force on the car from the track when the car's speed is v= 17 m/s is FN= 8912.7 N.
Explanation:
m= 1080 kg
r= 16m
v1= 7.6 m/s
v2= 17 m/s
g= 9.81 m/s²
v1= w1*r
w1= v1/r
w1= 0.475 rad/s
ac1= w1² * r
ac1= 3.61 m/s²
FN= m * (ac1 - g)
FN= -6696 N (a)
-----------------------------------------------------
v2= w2*r
w2= v2/r
w2= 1.06 rad/s
ac2= w2² * r
ac2= 18.06 m/s²
FN= m * (ac2 - g)
FN= 8912.7 N (b)
This has a two word answer: sun's heat. The faster moving molecules near the ocean's surface are provided with enough energy from the sun to escape the surface they are near.
Answer:
(from top to bottom)
350 N, 80 kg, 10 m/s^2, 80 kg, -15 m/s^2, -3000 N
Explanation:
Force = Mass*Acceleration (aka F = ma)
Using algebra, you can find the variables/unknown values.