Answer:
When the velocity of an object changes it is said to be accelerating. Acceleration is the rate of change of velocity with time. ... Acceleration occurs anytime an object's speed increases or decreases, or it changes direction.
Answer:
Centripetal Acceleration 18.75 m/s^2, Rotational Kinetic Energy 843.75 J
Explanation:
a Linear acceleration (we cant find tangential acceleration with the givens so we will find centripetal)
a= ω^2*r
ω= 300rev/min
convert into rev/s
300/60= 5rev/s
a= 18.75m/s^2
b) use Krot= 1/2 Iω^2
plug in gives
1/2(30*2.25)(25)= 843.75 J
The center-seeking change in velocity of an object moving in a circle is the centripetal acceleration.
So, by Newton's laws, we know that an object moving with a given velocity will remain in constant motion with a constant velocity until we apply an acceleration.
So we define acceleration as the rate of change of the velocity, also remember that velocity is a vector (has magnitude and direction), so, if there is a change the direction of the velocity, we have an acceleration that causes that.
In circular motion, the velocity vector is always perpendicular to the radius of the circle, and it can only be possible if the velocity direction is changing constantly. This will happen because of something called centripetal acceleration.
This acceleration points radially inwards (to the center of the circle) so is also perpendicular to the velocity of the moving object, and this is what causes the constant change in the direction of the velocity of the moving object.
Just to give an example, if you have a string with a mass on one end, and with your hand, you rotate the mass (from the string), the tension of the string would be the centripetal acceleration.
If you want to learn more about circular motion, you can read:
brainly.com/question/2285236
Answer:
F=2496 N
Explanation:
Given that,
Mass of SUV, m = 1600 kg
Initial speed, u = 0
Final speed, v = 25 m/s
Distance, d = 200 m
We need to find the net force. Firstly, let's find acceleration using equation of motion.

Net force, F = ma

So, the net force is 2496 N.