First, find the relationship of the circumference to its diameter by finding that the length of the diameter wraps around the length of the circumference approximately π times. Use this relationship to writing an equation showing the ratio of circumference to diameter equaling π. Then rearrange the equation to solve for the circumference. Substitute the diameter for 2 times the radius
Answer:
basically multiplication, (that quantity) times 5
Step-by-step explanation:
Answer:
1) x+5
(4)+5 =
9
2) 3x
3(4)
12
Step-by-step explanation:
Answer:
The volume of the cylinder is <em>approximately</em> 1570.8 cm³.
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Geometry</u>
Volume Formula [Cylinder]:
![\displaystyle V = \pi r^2 h](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20r%5E2%20h)
- <em>r</em> is radius
- <em>h</em> is height
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given variables</em>.
<em>h</em> = 5 cm
<em>r</em> = 10 cm
<u>Step 2: Find Volume</u>
- [Volume Formula - Cylinder] <em>Substitute</em> in variables:
![\displaystyle V = \pi (10 \ \text{cm})^2 (5 \ \text{cm})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%2810%20%5C%20%5Ctext%7Bcm%7D%29%5E2%20%285%20%5C%20%5Ctext%7Bcm%7D%29)
- [Order of Operations] Evaluate:
![\displaystyle V = 500 \pi \ \text{cm}^3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20500%20%5Cpi%20%5C%20%5Ctext%7Bcm%7D%5E3)
- Approximate:
![\displaystyle V \approx \boxed{ 1570.8 \ \text{cm}^3 }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%5Capprox%20%5Cboxed%7B%201570.8%20%5C%20%5Ctext%7Bcm%7D%5E3%20%7D)
∴ the volume of a cylinder whose height is 5 cm and radius is 10 cm is <em>approximately</em> 1570.8 cm³.
___
Learn more about Geometry: brainly.com/question/9774838
___
Topic: Geometry