Answer:
1.16atm
Explanation:
We are going to derive the mass of ether from density
mass=density *volume
Also moles=mass/molecular mass
molar mass C2H5OC2H5 =74.12 g/mole
the density of ether is 0.7134 g/ml
mass C2H5OC2H5 = 5.30 ml x 0.7134 g/ml = 3.78 g
moles C2H5OC2H5 =3.78 g x 1 mole/74.12 g = 0.0509 moles
PV = nRT where P=?; n=0.0509 moles; V=6.50L; R=0.0821 Latm/Kmol; T=35ºC +273 = 308K
P = nRT/V = 0.0509)(0.0821)(308)/6.50
P = 0.198 atm (to 3 significant figures (this is the partial pressure of diethyl ether).
TOTAL PRESSURE
P1+p2+p3
= 0.198 atm + 0.750 atm + 0.207 atm =1.1550atm
1.16atm(3 significant figures)
I believe that the answer for this question would be option A. 8 HOURS. Based on the given scenario above about a certain radioactive isotope placed near a Geiger counter, the half-life <span>of the isotope 32 hours later would be 8 hours. Hope this is the answer that you are looking for. </span>
b, the sunlight decreases because the sun is tilted on an axis and towards the fall and winter times, it gets shorter
When light breaks apart CO2, the molecule normally splits into carbon monoxide (CO) and an oxygen atom (O).
Answer:
There are strong intermolecular forces between particles that make up liquids, but not gases.
Explanation:
Solids, liquids and gases are the three states of matter that exists. However, they possess varying properties that distinguishes them from one another. One of these properties is the strength of the intermolecular forces that hold their molecules together.
The intermolecular forces of each state of matter becomes weak in this order: solid>liquid>gas.
- Intermolecular forces in solid molecules are very strong, hence making them compact and well attached to each other.
- Intermolecular forces in liquid molecules are not too strong, hence, cannot exist in a fixed position but tend to flow.
- Intermolecular forces in gaseous molecules are very weak, hence, gases can move easily and rapidly in any given space.